

PRICE TRANSMISSION IN DAIRY INDUSTRY IN BULGARIA

Bozhidar Ivanov

INSTITUTE OF AGRICULTURAL ECONOMICS – Sofia

Conference "Risk in Food Economy" - POLAND, 23 – 25 November 2016

- The study aims to analyze the price mechanism in the dairy chain and transmission of milk price from the farm to the final products delivered by dairies.
- BG cow milk price transmission to EU price
- BG milk price elasticity
- Price cointegration raw milk and cheese
- Price asymmetry raw milk and cheese

X

INSTITUTE OF AGRICULTURAL ECONOMICS - SOFIA

- Since August, 2014, the milk price in EU tumbles threatening the sustainability of dairy farms - Russian embargo, quota removal and overrunning supply upon demand.
- As of beginning of 2016, delivered milk in EU is 2,6% higher than 2015, a peak in last 5 years
- EU 140 MT, USA 95 MT and the increase lasts by more 2% in annual base. Cow herd rises up by 21K totally 9,34 million heads.
- Average EU price slip down by about 25% Nov 2014
 - 2016. In Bulgaria, fall is average 17%, wide deviation
 - **18%**

Share of dairy production in agricultural output, %

Source: Eurostat

EU and Bulgarian annual milk production, Kt

Source: Eurostat

INSTITUTE OF AGRICULTURAL ECONOMICS - SOFIA

Gross margins and subsides per cow, euro/head

Source: CAPA

Correlation

Correlation Monthly EU-BG milk prices	EU – BG Milk Prices without lag	EU – BG Milk Prices without lag -1 month
Multiple R	0,87	0,90
R Square	0,76	0,81
P-value	0,00	0,00
Standard Error	1,90	1,68

- Average 01.2007 10.2016 EU price 0,33 EUR/kg, BG price 0,30 EUR/kg. Since the milk crisis, the price gap closes.
- DF and ADF Test to see stationary or not-stationary

$$\Delta Y = \alpha_0 + \alpha_1 Y_{t-1} + \varepsilon \qquad \Delta Y = \alpha_0 + \alpha_1 Y_{t-1} + \alpha_2 \Delta Y_{t-1} + \varepsilon$$

INSTITUTE OF AGRICULTURAL ECONOMICS - SOFIA

Running DF and ADF Test for prices

$$\Delta Y_{MI} = \frac{0,37}{2,15} - \underbrace{\frac{0,13}{-2,87}}_{*} Y_{t-1} + \varepsilon$$

$$\Delta Y_{MI} = \frac{0.31}{2.14} - \frac{1.23}{-2.97} * Y_{t-1} + \frac{0.11}{-1.14} * \Delta Y_{t-1} + \epsilon$$

Regression Statistics and Test Statistics	DF Test	ADF Test	
Multiple R	0,26	0,28	
R Square	0,07	0,07	
P-value	0,005	0,007	
t Critical Stat α = 0,05, Constant	-2,89	-2,92	
Observations	118	116	

t stat < t critical value in DF test (confidence level 95%),
the Null hypothesis can't be certainty rejected that there is a unit error

X

INSTITUTE OF AGRICULTURAL ECONOMICS - SOFIA

Elasticity of BG milk price to EU average price change

 Elasticity is a change of BG milk price at any movement of EU price. Assumption is the price elasticity is not same at any point of the curve.

$$E_{PR} = Log(\frac{\Delta PR_{BG}}{\Delta PR_{EU}})$$

Source: CAPA

Milk price elasticity matters

- Neoclassical concept is "one price theory" the price of milk in BG and EU would at least move in same direction by same magnitude (regression coefficient 1);
- The BG price reacts by different elasticity in separate cases of EU price change. Perfect elasticity, when EU price is less than average over a period and strong elasticity (0,75), when the EU price is at higher price zone;
- Dairy farmers face a bigger risk strong likeness to experience low price, when EU market is plumbing whereas, slower price recovery when the market climbs.

INSTITUTE OF AGRICULTURAL ECONOMICS - SOFIA

Running DF and ADF Test on milk and cheese prices

$$\Delta Y_{MI} = \frac{0,46}{2,32} - \underbrace{\frac{0,09}{-2,23} * Y_{t-1} + \varepsilon}$$

$$\Delta Y_{MI} = \frac{0,46}{2,54} - \frac{0,12}{-2,47} * Y_{t-1} + \frac{0,23}{-1,59} * \Delta Y_{t-1} + \epsilon$$

Test Statistics milk – cheese prices	DF Test	ADF Test
Multiple R	0,32	0,35
R Square	0,10	0,12
P-value	0,03	0,048
t Critical Stat α = 0,05, Constant	-2,98	-2,97
Observations	47	46

• t stat < t critical value in DF and ADF test. Milk price and cheese prices are not clearly cointegrated.

Relationship milk and cheese prices

- Correlation and determination of milk price and cheese (wholesale) price are relatively low
- There is rather a lag in milk price print in the cheese price t-2, t-1

Correlation milk – cheese prices	Milk – cheese price without lag	Milk – cheese price, Lag t- 1	Milk – cheese price, Lag t- 2
Multiple R	0,43	0,47	0,48
R Square	0,18	0,22	0,23
P-value	0,002	0,0	0,0
Standard Error	0,30	0,29	0,28

 Weak relationship between milk and cheese prices implies for presence of other significant factors influencing cheese price – import price, input deflator, price asymmetry.

INSTITUTE OF AGRICULTURAL ECONOMICS - SOFIA

Price asymmetry milk-cheese prices

 When downstream (milk) prices react in a different manner to upstream (Wholesale cheese) price changes – characterizing by contrary movement either over or under-reaction;

$$APT = \frac{\frac{(PR_{t}^{CH} - PR_{t-1}^{CH})}{PR_{t-1}^{CH}}}{\frac{(PR_{t}^{MI} - PR_{t-1}^{MI})}{PR_{t-1}^{MI}}} \qquad APT_{n} = \sum_{t=1}^{N=48} (APT_{t})$$

- In the period 2012 2015 the milk price change is -3%, the cheese price 13,8%;
- Milk price makes up 60% of the wholesale cheese price;
- Variation of milk prices is higher (7,7%) than cheese prices (4,9%)

INSTITUTE OF AGRICULTURAL ECONOMICS - SOFIA

Equating asymmetry milk-cheese prices

- Price asymmetry in the dairy chain is: APT = -0,92;
- where APT<-1 the upstream prices rise up higher or oppositely to milk prices fall;
- APT>-1<0 the upstream price rise higher or slumps slower than milk price;
- APT>0<1 milk prices goes up higher than cheese prices or it declines slower than cheese price;
- APT>1 milk prices elevate reversed or higher then cheese prices drop;

$$APT = \alpha + \varepsilon * \beta * \frac{dTRPR_{CH}}{dPR_{MI}} + \epsilon$$

Specific conclusions

- 1. Price asymmetry between milk and cheese prices is high as the cheese price is driven mostly by other factors (inflation, production costs, import prices) than local milk prices;
- 2. Farmers face economic risk from price asymmetry: price pressure on milk price and limited benefit when cheese and upstream prices go up;
- 3. APT can be equated as a regression function by including cheese price trend change and milk price change (R=0.73, $R^2=0.52$).

General conclusions

- 1. Dairy farmers recently and ahead will meet serious competition and prices is unlikely to rise to levels in 2013-2014 challenge how to handle costs and keep production;
- 2. Most vulnerable are small dairy farms, which are not well integrated in the value chain and suffers price asymmetry and lower market prices;
- CAP policy should rather focus on price crisis and income losses than to aid farmers on "decoupled" schemes.

THANK YOU FOR YOUR ATTENTION!

Bozhidar Ivanov

Institute of Agricultural Economics - Bulgaria

e-mail: bozidar_ivanov@yahoo.co.uk